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LETTER TO THE EDITOR

A unified mean field approach to the dHVA effect in the vortex
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Abstract. The effect of nonmagnetic impurity scattering on the additional damping of
de Haas—van Alphen (dHvA) oscillations in the mixed state of type Il superconductors near the
upper critical field is studied within mean field theory in the relaxation time approximation. Our
calculations show that this effect becomes important only for small thermal smearing of the single
particle distribution function and small disorder broadening of the Landau levels. The relationships
between the different mechanisms of broadening are discussed.

The theory of the magnetic quantum oscillations observed experimentally in the mixed state
of several type Il superconductors (SC) has been recently reviewed [1]. The variety of
microscopic models for the description of the experimental data in the close vicinity of the
upper critical field H,.,, reflects a lack of a unified approach which could establish relationships
between the proposed models and could determine the different ranges of their validity.

Specific conditions characterize all models. The Maki—Stephen (MS) [2] semi-classical
model, which was also derived by Wasserman and Springford using an alternative approach
[3], not only neglects the coherence of the quasi-particle scattering by the vortex lattice [4],
but also does not take into account properly the Landau level (LL) broadening effect due to
impurity scattering and the smearing of the quasi-particle distribution function due to thermal
excitations. Inthe semi-classical approach, developedin[4] and [5] on the basis of perturbation
expansion in the order parameter for a pure two-dimensional (2D) SC, the thermal excitations
were taken into account exactly. However, it was shown by these studies that the Gorkov
expansion fails to describe the low temperature limit because of the infinite degeneracy of the
Landau levels (LL) .

Numerical simulations [6, 7] of the corresponding Bogoliubov—de Gennes equations in
this limit led to a linear dependence of the damping rate on the order paramgtahich
cross-overs to MS-like quadratic behaviour with increasing temperature. These results seem
to be in qualitative disagreement with the model developed in [8] and [9], where the diagonal
approximation [10] for the quasi-particle (QP) excitations spectrum was used, resulting in a
quadratic behavioury A2, even at zero temperature.

In[11] and [12] the effect of nonmagnetic impurities on the dHVA oscillations was studied.
The authors of [11], solving self-consistently the Green’s function equations up to the leading
term inAg, found a dramatic enhancement of the damping rate in the SC state with respectto the
MS result. They obtained the result that for a Landau level wigtkatisfyingl’ < I' <« Ko,
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the additional SC induced damping factor, which is the same for all harmonics, is given by:

3/2X2
ToeA
Ri=1—« 0 (1)
NI
where A3 = (Ag)/(ﬁwC)Z ((...) means spatial average over vortex lattice), and=

% (Z‘f;)z > 1. It should be stressed that equation (1), which implies a strong influence of

impurity scattering on the dHvA oscillations in the mixed state, is in contrast to the relatively

weak thermal effect obtained for pure materials [4, 5] and in contrast also to the results of [12],
where the damping associated with impurity scattering turns out to be asymptotically small in
the quasi-classical limit; ~ u/hw, — oo (u is a chemical potential)e = 1 +aowfrﬁ,

with ag ~ 1.

In the present study we examine the impurity scattering effect on the damping of magnetic
quantum oscillations neafl.,, taking advantage of the Green'’s function formalism in the
quasi-classical limit/nz > 1, developed in [5]. This approach, which is based on a direct
calculation of the thermodynamic potential, makes it possible to avoid many of the difficulties
encountered in [11]. Our results show that in the relaxation time approximation the impurity
scattering effectis significantly weaker than that predicted by equation (1), and can be neglected
as long as magr 7, I') is not too small compared fav.. (For the fundamental harmonic it is
found thata ~ In (hw,./7T).)

Here we also compare the Gorkov expansion with the thermodynamic potential obtained
fromthe QP spectruminthe diagonal approximation. The agreement between these approaches
in the limit of a small broadening of the LLs determines the range of validity of the diagonal
approximation and enables us to make new conclusions about the singular nature of the dHvVA
oscillations in the low-temperature, pure limit, which arises from the infinite degeneracy of
the Landau levels. It is also shown that in this limit the diagonal approximation agrees with
the numerical calculations made by Nornedral.

Restricting our analysis to the close vicinity of the upper critical figld, we consider
only the leading (i.e. quadratic) term in the Gorkov’s expansion of the SC free energy in the
order parameter. A 2D electron gas model is used. However, the obtained results for the
amplitude of the first harmonic at a given magnitude of the order parameter are valid also
for isotropic 3D superconductors, since the main contribution to the oscillating part of the
thermodynamic potential comes from extremal orbits vkitte= 0. The integration ovek,
near the stationary point for a system with arbitrary broadening of LLs yields a constant factor
in the amplitude and a phase shift of oscillationsty. Similar modifications take place in
the normal-phase magnetization, keeping the relative damping rate unchanged [13].

The quadratic term of the Gorkov expansion for the thermodynamic potential can be
expressed through Green’s function (?1, T a)) and the impurity-dressed pair potential
[11] A (7, w):

2 4
Q® — aVH/ |A%(7)] P — %H Z/dzrldzrzcb (71, 72 ©) (2)

where
P (?1, ?2; a)) =A (71, a)) Gg (?1, ?2; a)) A* (72, a)) Gg (?1, ?2; —a)) . (3)
In the above equationg is a Bardeen—Cooper—Schrieffer (BCS) interaction constant, and
B=1/T,w==nT (2v+1) andv = 0, £1, ... are Matsubara frequencies. We have used
the units where the Plank constant is equal to unity. All spatial variables are measured in the
magnetic length units;; = /5.

Using the standard averaging technique [14] (which may not be valid at very low
temperatures because of the neglect of coherent electron paths [15, 16]), the isotropic electron
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scattering is described by a single parameter, the electronic momentum relaxation time
7, = 1/2T. The region where the dHVA oscillations are significanTisS w.. Strictly
speaking, however, the parametefl2/w. can be of the order of 1.

We also neglect in our calculation the effect of impurities on the electron pairing
A(7,w) = A(7). The detailed analysis of Green's functions in [11] justifies this
approximation. In particular, it was shown there that the correction to the pair potential is
small (~ 1/,/nF < 1) in the quasi-classical limit under consideration.

The order parameter is selected as a lattice distribution function from the lowest Landau
level space [17]. In the symmetric gauge

2m\ 4 - o ,
Ax,y) = <?> Age'™ Z VM= (744 /2) (4)
n

X

where the numberg anda, are arbitrary ang,, = Z~. The magnetic field = (0,0, H)is
assumed to be uniform and perpendicular to the condugtinglane. The concrete choice of
the vortex lattice is not important since, as in pure materials [5], the leading (quadratic) term
of the thermodynamic potential does not depend on the spatial arrangement of the vortices.
This feature reflects the absence of interaction between vortices in the quadratic term of the
free energy.

The single electron Green function, in the relaxation time approximation used, is

G, (71 T w) = exp(—l2 [71. ?2]z> 5g (p; w) Where g = 7, — 71 and

L o2 (,0 /2)
G (p: @) = 27 ¢ ’ Z|a)+|1"szgn(a))—wc(n+1/2)+,u'

(®)

In the above expressioh, is the Lagaurre polynomial of the order The functionég
differs from the pure limit electron Green function in a magnetic field [19] by the self-energy
correction I'sign (w).

Following the procedure developed in [5] and using the Poisson summation formula,
we find the Green functio&é"”) in the quasi-classical approximatiomz >> 1). Substituting
55;”) andA (7) into equations (2) and (3) and integrating over the centre of mass coordinates,
7 = % (7 2+ 7 1), the thermodynamic potential per unit volunge,. = Q@ /ra? N, is
reduced to the known expression obtained for a pure material with the replacenenbpf
|lw| +T:

602
Q== - oV | A2 6
<v 52 _n”;qy> (6)

wherey,, = [~ dp exp(—a,p — 3p?) with &, = 27 (Jw| +T) / /s, is the Cooper-pair
spatial correlation function. The sharp damping of the integrand at 1 reflects the
importance of the local electron pair configurations and justifies the neglect of the turning
point region(p ~ 2«/2}1[:) in the quasi-classical Green function.

The quantityg,,, where

1 eXo

35 )
2coshX, — cos(2rny)

andwhereX,, = 27 (|| +T') /w., is responsible for the quantum magnetic oscillations. Inthe
low temperature limitX, <« 1, it has a singularity,, ~ x2 if a Landau level coincides with
the Ferm| energy. Therefore, at afixed< I' the second order correction inis proportional

to ~ W' This seems, at a first sight, to reproduce the dependence (equation (1)) found in

qo =
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[11]. However, as we shall see below, the summation over Matzubara frequencies leads to a
different result.
The Fourier series expansiongf is

oo
o = afoo) + ZZ a® cos(2mknr) (8)
k=1
where the coefficient,
20 — exp[—27k (T + |w|) /o] ©)
¢ 1—exp[—4r (' + o)) /o]
determines the damping of theharmonic. This last expression shows the principal difference
between uniform and oscillating parts of the thermodynamic potential. As the dominant
contribution to the oscillating part of the thermodynamic potential comes from the energy
interval 2t |o| < w., the uniform part, as is readily seen from the definitiopnfis dominated
by the significantly broader energy range | < /nrw,. In other words, this result means
that the oscillating part of the Cooper-pair condensation energy is determined by a few Landau
levels near the Fermi surface, whereas for the uniform part apeut > 1 Landau levels
contribute.
Using equations (6) and (8) the oscillatory part of the magnetizalign= —9<2, /9 H,
is determined by the strongly oscillating density of states funetiort should be noted that
in the self-consistent theory, where the order parameter corresponds to a minirtyittod
oscillations of the order parameter do not influence significantly the magnetization, since the

term 3;2 32 is exactly zero. Therefore, the leading harmonic of the magnetization is [18]
2 4r?T A%
MY = __ﬁ,u ol Zafol) —0 sin(2rng) (10)
¢0 We ® A/F

wheregg = mc/e is the electronic flux quantum. In deriving this expression it is assumed that
a, < 1, so thaty,, = /7/2. Due to the large values of the filling factof, this condition is
usually satisfied even for relatively large temperatures or LL width.

If the impurity broadening or temperature is large, i.e.wAf@ + n T) /w. 2 1, then only
the first harmonic in equation (8) survives. In this ca§eé ~ exp[—27k (I" + |0|) /w.], SO
that the scattering by impurities does not influe®e which is determined by equation (1)
with o = 1.

In the low temperature limit the sum overmay be replaced by an integral. The simple
integration leads to

W _ @ l+exp—2r (T +xT) /o]
Z " 82T [1—exp[—2n (C+77) /wc]]'

(11)

Substituting equation (11) into equation (10), one obtalras In (W) at low impurity

density 2T /w, < 1. At 27T /w. 2 1 we again recover MS like damping with= 1.

It is well known [20] that if the LLs are narrow the shape of the oscillations deviates
significantly from the fundamental harmonic shape; that is, the contributions of higher
harmonics become important. We discuss this problem by considering our 2D system in
the limit whenI',; = max(I', 7 T) <« w, so that the oscillation pattern has a saw-tooth shape.
Excluding fromg,, the zero harmonic, the oscillating part of the thermodynamic potential
transforms to

A2 cos(2rny) eX~/ coshX,,
[0 .
N coshX, — cos(2rnr)

QS,(IS( (12)
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Here the sum over Matsubara frequency is replaced again by an integral. Estimating the
maximal value of2,,., which is obtained for an integer-, we arrive at a simple result

2 o
N232 Fgf.
This implies that the damping of the higher harmonics is much stronger in this limit than it is
in that of the fundamental one.

It is interesting now to compare the results obtained from the Gorkov expansion with the
calculation based on the QP density of states, where the spectrum is given by the diagonal

approximation, i.e.E, (7, k.) = \/e2 (k) + A2(T) whereeg, (k) = w. (n +3) + %2 — i,

and A, (7) is the diagonal matrix element of the (momentum space) pair potential in the
Landau levels representation [10]. This is done by generalizing the formalism developed in
[20] for a 2D free electron gas to the system of independent QPs described above. The resulting
oscillatory part of the thermodynamic potential is given by:
(mw)Y? cosrpnp — /%)
Qosc = 2D2— (_1)17 e (14)
g pZ:l b JP

whereD, = m/2x is the 2D single electron density of states, and the integral

(13)

Qs,osc ~

0]

_ [0  mo/B
O = / o2 sinhGrawyp) or (@ (15)
0

is obtained from a product of the Fourier transforms of three distributions: the Fermi distribu-
tion function accounting for the finite temperature smearing; the Lorentz distribution arising

from the impurity scattering; anél,(w) = <% 70 dg COS(a) [E2 + A,%F(7)> cos(r,,§)>,

which arises from the scattering by the pair potential. Hgre- 27p/w. and(. . .) stands for
integration ing space over the magnetic Brillouin zone. It is obvious that for a vanishing
order parameter equation (14) reduces to the well known Lifshitz—Kosevich formula. In the
general case

J1(x)
2x

Ep(@,q) =8 (0 —1)) —< wA5F>9(w_Tp) (16)

wherex = A, /w? — r,% andJ; (x) is the Bessel function. The superconducting contribution

to the thermodynamic potential is given by the second term on the RHS of equation (16).
Substituting equation (16) into equation (15) one can easily see that the integral over

diverges logarithmically in the limif,; = max(z T, T', A) — 0 whereA ~ /(A2 ). Hence,

the maximal characteristic value efis limited by~ 1/ T',;. Using(AZ ) = A3/ /mnr [21]
we arrive at the damping rate for the first harmonic in the form

o\ 7¥2K2
R;=1-1In <27r1“ef) Jir a7)
At A « T andl' K w./27 this expression is consistent with that obtained from the Gorkov
expansion. However, with increasing temperaturd”dhe results of the two approaches
tend to deviate from each other. Such behaviour is caused by a deviation from the diagonal
approximation as we move far from tig,-line.

In the opposite case, when the broadening of LLs due to impurity scattering or the thermal
smearing is weak, the influence of the energy levels degeneracy becomes important, leading
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to a non-analytical dependence on the pair pote®jatk 1 — i\/’%g In (f;) This result is
nothing but the Miyake—Miller—Gyorffy formula in the asymptotic lirdi — 0. Appearance
of the logarithmic term is a reflection of the divergence of the expansiav im the singular
limit of the degenerate LLS7 7, ") — 0.

Using the above results one can discuss the validity of the Gorkov expansiof/pear
As before, we consider only the oscillating part of the leading term. For a small but finite
value of max(z 7, ') (i.e. K€ w./27) the SC correction is small provides < max(z T, I').

In this case, equation (6) is a good approximationSir With the field decrease (so that

A > max(x T, I')) the level broadening is caused mostly by the effect of the order parameter,
thus leading to a singular behaviour®f,., which obviously cannot be recovered by a finite
number of the Gorkov's expansion terms. It is interesting to note that with a further decrease
of the field when the width is comparable with, i.e. when Z A ~ w., we again return to

the MS-like damping of the first harmonic.

In the opposite limit, maxz T, T') 2 w./27, which is usually satisfied in experiments, the
leading term of the Gorkov expansion, equation (6), describes accurately the thermodynamic
potential in the entire range of magnetic fields nébg, A < w.. Because the diagonal
approximation does not describe correctly the higher order termas fior which the phase
coherence is crucial [2], we do not consider here the low-field linit w..

Returning to equation (13), one can now estimate the thermodynamic potential when the

LL broadening is determined by the pair potential, i.e. whgh~ /< A2 > ~ Zo/nllp/“,

so that
Qs,osc ~ z()/’/Z:IL?/‘].' (18)

Such a dependence was extracted from the numerical solution of the Bogoliubov—de Gennes
equations by Normaat al for a pure 2D SC in the low-temperature regibfw, < 0.04. It

should be stressed that the linear dependenceqda characteristic of a 2D system. In a 3D

SC the contribution of the higher harmonics is smaller dug’dn equation (14), which gives

rise to~ AY? dependence.

In conclusion, we have shown that in the case of narrow Landau levels the SC-induced
damping of the magnetic quantum oscillations is governed by the smearing mechanism with the
largest characteristic width parameter of all three types of broadening, i.e. impurity scattering,
thermal smearing, and the effect of the pair-potential. When the width becomes comparable
with the interlevel distance, i.e. whemrP.r/w. ~ 1, any dependence of the SC-induced
damping factorR;, on broadening disappears and to leading order in the SC order parameter
R; is given by equation (1) witlk = 1. Similar to the magnetic oscillations in the normal-
phase the dependence of the fundamental harmonic amplitullg: darns out to be weaker
than of the higher ones.

Finally, it should be stressed that our analysis in this communication is restricted to
magnetic oscillations near the upper critical field. Extension of such an analytical approach
to the low field region deep in the SC state is a very difficult task. Generally speaking,
however, we expect that similar to pure materials [5], the higher order terms in the Gorkov
expansion are determined by the expansion parametek2/ I‘ff ng in the case when
I = max(zT,T) < /2w and~ A3/w?np for Ty 2 ./27. In the low magnetic
field limit, when this parameter becomes large, one should sum up all terms of the perturbation
series. An example of such a summation in the lifit < w./27 and for the most singular
case, when a Landau level lies at the Fermi energy, was given in [22]. However, in the
general case the behaviour of the thermodynamic potential is unknown. The QP density of
state approach also leads to serious difficulties arising from the complex QP spectrum due to
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off-diagonal Landau level pairing [23]. An interesting attempt to consider the low field limit
was made in [24], where the spatial variatior] &f was neglected due to the small size of the
vortex core region.
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